

Prachi Shahare

Assistant Professor

Computer Department

Durga Mahavidyalaya, Raipur

 Topic: Javascript

JAVASCRIPT

Introducing JavaScript

JavaScript is a cross-platform, object-oriented scripting language used to make webpages interactive (e.g., having

complex animations, clickable buttons, popup menus, etc.). There are also more advanced server side versions of

JavaScript such as Node.js, which allow you to add more functionality to a website than downloading files (such as

realtime collaboration between multiple computers). Inside a host environment (for example, a web browser),

JavaScript can be connected to the objects of its environment to provide programmatic control over them.

JavaScript contains a standard library of objects, such as Array, Date, and Math, and a core set of language elements

such as operators, control structures, and statements. Core JavaScript can be extended for a variety of purposes by

supplementing it with additional objects; for example:

 Client-side JavaScript extends the core language by supplying objects to control a browser and

its Document Object Model (DOM). For example, client-side extensions allow an application to place

elements on an HTML form and respond to user events such as mouse clicks, form input, and page
navigation.

 Server-side JavaScript extends the core language by supplying objects relevant to running JavaScript on a
server. For example, server-side extensions allow an application to communicate with a database, provide

continuity of information from one invocation to another of the application, or perform file manipulations

on a server.

JavaScript can be added to your HTML file in two ways:

 Internal JS: We can add JavaScript directly to our HTML file by writing the code inside the <script> tag.

The <script> tag can either be placed inside the <head> or the <body> tag according to the requirement.

 External JS: We can write JavaScript code in other file having an extension.js and then link this file inside

the <head> tag of the HTML file in which we want to add this code.

Syntax:

<script>

// JavaScript Code

</script>

Example

<!DOCTYPE html>

<html lang="en">

<head>

<title>

Basic Example to Describe JavaScript
</title>

</head>

<body>

<!-- JavaScript code can be embedded inside

head section or body section -->

<script>
console.log("Welcome to Javascript ");

</script>

</body>
</html>

Output: The output will display on the console.

Welcome to Javascript

Features of JavaScript:

According to a recent survey conducted by Stack Overflow, JavaScript is the most popular language on earth.

With advances in browser technology and JavaScript having moved into the server with Node.js and other

frameworks, JavaScript is capable of so much more. Here are a few things that we can do with JavaScript:

 JavaScript was created in the first place for DOM manipulation. Earlier websites were mostly static, after JS

was created dynamic Web sites were made.

 Functions in JS are objects. They may have properties and methods just like another object. They can be

passed as arguments in other functions.

 Can handle date and time.

 Performs Form Validation although the forms are created using HTML.

 No compiler is needed.

Applications of JavaScript:

 Web Development: Adding interactivity and behavior to static sites JavaScript was invented to do this in

1995. By using AngularJS that can be achieved so easily.

 Web Applications: With technology, browsers have improved to the extent that a language was required to
create robust web applications. When we explore a map in Google Maps then we only need to click and drag

the mouse. All detailed view is just a click away, and this is possible only because of JavaScript. It uses

Application Programming Interfaces(APIs) that provide extra power to the code. The Electron and React is

helpful in this department.

 Server Applications: With the help of Node.js, JavaScript made its way from client to server and node.js is

the most powerful on the server-side.

 Games: Not only in websites, but JavaScript also helps in creating games for leisure. The combination of
JavaScript and HTML 5 makes JavaScript popular in game development as well. It provides the EaseJS

library which provides solutions for working with rich graphics.

 Smartwatches: JavaScript is being used in all possible devices and applications. It provides a library

PebbleJS which is used in smartwatch applications. This framework works for applications that require the

internet for its functioning.

 Art: Artists and designers can create whatever they want using JavaScript to draw on HTML 5 canvas, and

make the sound more effective also can be used p5.js library.

 Machine Learning: This JavaScript ml5.js library can be used in web development by using machine

learning.

 Mobile Applications: JavaScript can also be used to build an application for non-web contexts. The features

and uses of JavaScript make it a powerful tool for creating mobile applications. This is a Framework for
building web and mobile apps using JavaScript. Using React Native, we can build mobile applications for

different operating systems. We do not require to write code for different systems. Write once use it

anywhere!

Limitations of JavaScript:

 Security risks: JavaScript can be used to fetch data using AJAX or by manipulating tags that load data

such as , <object>, <script>. These attacks are called cross site script attacks. They inject JS that

is not the part of the site into the visitor’s browser thus fetching the details.

 Performance: JavaScript does not provide the same level of performance as offered by many traditional

languages as a complex program written in JavaScript would be comparatively slow. But as JavaScript is

used to perform simple tasks in a browser, so performance is not considered a big restriction in its use.

 Complexity: To master a scripting language, programmers must have a thorough knowledge of all the

programming concepts, core language objects, client and server-side objects otherwise it would be

difficult for them to write advanced scripts using JavaScript.

<script> <script>

JavaScript-Element

<!DOCTYPE html>

<html>

<head>

 Weak error handling and type checking facilities: It is weakly typed language as there is no need to

specify the data type of the variable. So wrong type checking is not performed by compile.

Embedding JavaScript in HTML page:

JavaScript adds a breath of fresh air to a static HTML file. You can embed JavaScript directly or as an external
file in HTML.

HTML, CSS, and JavaScript are the three basic pillars of the modern world wide web. If you want to create a

modern, interactive website, you can hardly avoid enlivening HTML text files by incorporating CSS and

JavaScript. HTML files are plain text documents for creating and structuring website content. HTML is easy to
learn, and you can get by without formatting. It’s also user-friendly thanks to free code editors such as Notepad++ or

Kate. On the other hand, creativity is provided by CSS text files embedded in HTML embedded CSS text files,

which define the layout, color scheme, typographies, and other design elements of a website.

A website only becomes truly interactive with JavaScript elements, which add dynamic behavior to the content.
JavaScript files embedded in HTML, for example, enable the active modification of website content such as
automatic date display, day-dependent coloring, or automatically displayed messages when the website is visited.
With enabled JavaScript, JavaScript content can be executed directly in most browsers. This saves processing power
and improves the loading speed of interactive content and animations on a website.

What options are there for embedding JavaScript?

You can note or reference JavaScript elements in HTML source code as script elements as follows.

Script elements are usually embedded in the body or head area of an HTML document.

Depending on how you include JavaScript in HTML, you can choose from the following options:

 Note JavaScript directly in an HTML page: Direct notation in HTML is done in the head element and

ensures that JavaScript files load as quickly as possible via direct notation. The downside is that direct

notations must be made for each HTML document on a website to load content.

 Referencing JavaScript as an external file in HTML: Embedding an external JavaScript file references
the JavaScript file in the HTML text. Embedding as a reference allows externally noted JavaScript files to

be loaded on multiple pages without having to note them directly as verbose JavaScript elements in HTML

files.

How to embed JavaScript in HTML: practical examples

You can choose between two different methods to include JavaScript. We’ll introduce you to both.

Embedding JavaScript in HTML directly

To load JavaScript elements as quickly as possible, place the script element in the HTML head or body. In new
browsers, a relatively simple JS source code is sufficient. In the following example, the message “Hello friend” is
written on a website via JavaScript integration:

<!DOCTYPE html>

<html lang="en">

<head>

<title>Include external JavaScript file</title>

<script src="filename.js"></script>

</head>

</body>

<script type="text/javascript">

JavaScript-Element

</script>

<head>

<script>

JavaScript-Element

</script>

<noscript>

Please enable JavaScript to see the JavaScript element.

</noscript>

</head>

Complex visualizations, animations, or interactive elements can also be noted directly in HTML. The advantage of

direct embedding is that JavaScript elements are edited directly in the HTML file. The disadvantage is that you have
to note JavaScript functions separately in the source code for each HTML document. This leads to increased effort
when maintaining the source code.

Embedding JavaScript as an external file

It’s more efficient and more common to note down JavaScript as an external file and reference it in the HTML
document. In this way, JavaScript can be included in HTML as if the file were noted directly in the source code.

In the HTML document it looks like this:

Embedding JavaScript as an external file offers the advantage that only the link to the external file is referenced.
So, all desired HTML pages with a corresponding reference can access the file and load it faster. In addition, the

source code is easier to maintain, since it’s not several HTML documents, but only one JavaScript file.

Special features in different HTML versions

When embedding JavaScript in HTML, note that older browsers require more verbose source code. Instead of the
simpler HTML 5 <script>...</script> tag, the JavaScript inclusion would look like this:

If you want to display a placeholder message for visitors who have JavaScript disabled, use the following noscript
tag:

<title>JavaScript: Hello Friend</title>

<script>

alert(“Hello Friend!“);

</script>

</head>

<body>

<p>This website only displays a message box.</p>

</body>

</html>

<html>

<head>

<script type = "text/javascript">

<!--
function sayHello() {

alert("Hello World")

}

//-->

</script>

</head>

Event Handling

 Event Handling is a software routine that processes actions, such as keystrokes and mouse movements.

 It is the receipt of an event at some event handler from an event producer and subsequent processes.

Functions of Event Handling

 Event Handling identifies where an event should be forwarded.

 It makes the forward event.

 It receives the forwarded event.

 It takes some kind of appropriate action in response, such as writing to a log, sending an error or recovery ro utine

or sending a message.

 The event handler may ultimately forward the event to an event consumer.

Event Handlers

Event

Handler
Description

onclick

When a click action occurs on an HTML element, this event handler runs a

JavaScript script. For example, the onClick event handler may be called when a

button is clicked, a link is clicked, a checkbox is checked, or an image map is

selected.

onmouseover
When the mouse is over a particular link or object, this event handler runs a

JavaScript script.

onload
When a window or image has fully loaded, this event handler executes some

JavaScript code.

onkeypress When a user presses a key, this event handler executes JavaScript code.

onmouseout
When the mouse leaves a specific link or object, this event handler runs a

JavaScript script.

onkeyup
When a key is released during a keyboard action, this event handler executes

JavaScript code.

onkeydown
When a key is pressed on the keyboard during an action, this event handler runs a

JavaScript script.

onclick Event Type

This is the most frequently used event type which occurs when a user clicks the left button of his mouse. You can

put your validation, warning etc., against this event type.

Example

Try the following example.

<html>

<head>

<script type = "text/javascript">
<!--

function validation() {

all validation goes here

.........

return either true or false

}
//-->

</script>

</head>

<body>

<form method = "POST" action = "t.cgi" onsubmit = "return validate()">
.......

<input type = "submit" value = "Submit" />

</form>

</body>

</html>

<html>

<head>
<script type = "text/javascript">

<!--

function over() {

Output

Click the following button and see result

onsubmit Event Type

onsubmit is an event that occurs when you try to submit a form. You can put your form validation against this event

type.

Example

The following example shows how to use onsubmit. Here we are calling a validate() function before submitting a

form data to the webserver. If validate() function returns true, the form will be submitted, otherwise it will not

submit the data.

Try the following example.

onmouseover and onmouseout

These two event types will help you create nice effects with images or even with text as well.
The onmouseover event triggers when you bring your mouse over any element and the onmouseout triggers when

you move your mouse out from that element. Try the following example.

<body>

<p>Click the following button and see result</p>

<form>

<input type = "button" onclick = "sayHello()" value = "Say Hello" />

</form>

</body>

</html>

HTML 5 Standard Events

The standard HTML 5 events are listed here for your reference. Here script indicates a Javascript function to be

executed against that event.

Attribute Value Description

Offline script Triggers when the document goes offline

Onabort script Triggers on an abort event

onafterprint script Triggers after the document is printed

onbeforeonload script Triggers before the document loads

onbeforeprint script Triggers before the document is printed

onblur script Triggers when the window loses focus

oncanplay script
Triggers when media can start play, but might has to stop for

buffering

oncanplaythrough

script
Triggers when media can be played to the end, without stopping

for buffering

onchange script Triggers when an element changes

onclick script Triggers on a mouse click

oncontextmenu script Triggers when a context menu is triggered

ondblclick script Triggers on a mouse double-click

ondrag script Triggers when an element is dragged

ondragend script Triggers at the end of a drag operation

ondragenter script Triggers when an element has been dragged to a valid drop target

document.write ("Mouse Over");

}
function out() {

document.write ("Mouse Out");

}

//-->

</script>

</head>

<body>

<p>Bring your mouse inside the division to see the result:</p>

<div onmouseover = "over()" onmouseout = "out()">

<h2> This is inside the division </h2>

</div>
</body>

</html>

ondragleave

script
Triggers when an element is being dragged over a valid drop

target

ondragover script Triggers at the start of a drag operation

ondragstart script Triggers at the start of a drag operation

ondrop script Triggers when dragged element is being dropped

ondurationchange script Triggers when the length of the media is changed

onemptied

script
Triggers when a media resource element suddenly becomes

empty.

onended script Triggers when media has reach the end

onerror script Triggers when an error occur

onfocus script Triggers when the window gets focus

onformchange script Triggers when a form changes

onforminput script Triggers when a form gets user input

onhaschange script Triggers when the document has change

oninput script Triggers when an element gets user input

oninvalid script Triggers when an element is invalid

onkeydown script Triggers when a key is pressed

onkeypress script Triggers when a key is pressed and released

onkeyup script Triggers when a key is released

onload script Triggers when the document loads

onloadeddata script Triggers when media data is loaded

onloadedmetadata

script
Triggers when the duration and other media data of a media

element is loaded

onloadstart script Triggers when the browser starts to load the media data

onmessage script Triggers when the message is triggered

onmousedown script Triggers when a mouse button is pressed

onmousemove script Triggers when the mouse pointer moves

onmouseout script Triggers when the mouse pointer moves out of an element

onmouseover script Triggers when the mouse pointer moves over an element

onmouseup script Triggers when a mouse button is released

onmousewheel script Triggers when the mouse wheel is being rotated

onoffline script Triggers when the document goes offline

onoine script Triggers when the document comes online

ononline script Triggers when the document comes online

onpagehide script Triggers when the window is hidden

onpageshow script Triggers when the window becomes visible

onpause script Triggers when media data is paused

onplay script Triggers when media data is going to start playing

onplaying script Triggers when media data has start playing

onpopstate script Triggers when the window's history changes

onprogress script Triggers when the browser is fetching the media data

onratechange script Triggers when the media data's playing rate has changed

onreadystatechange script Triggers when the ready-state changes

onredo script Triggers when the document performs a redo

onresize script Triggers when the window is resized

onscroll script Triggers when an element's scrollbar is being scrolled

onseeked script
Triggers when a media element's seeking attribute is no longer

true, and the seeking has ended

onseeking

script
Triggers when a media element's seeking attribute is true, and the

seeking has begun

onselect script Triggers when an element is selected

onstalled script Triggers when there is an error in fetching media data

onstorage script Triggers when a document loads

onsubmit script Triggers when a form is submitted

onsuspend

script
Triggers when the browser has been fetching media data, but

stopped before the entire media file was fetched

ontimeupdate script Triggers when media changes its playing position

onundo script Triggers when a document performs an undo

onunload script Triggers when the user leaves the document

onvolumechange

script
Triggers when media changes the volume, also when volume is

set to "mute"

onwaiting

script
Triggers when media has stopped playing, but is expected to

resume

